

Study of the dynamic response of a counterbalance forklift truck by means of experimental measurements and numerical models

Marco Pinelli¹, Monica Giovannucci², Alberto Martini³

¹ School of Engineering, University of Bologna | ² Toyota Material Handling Manufacturing Italy SpA | ³ DIN – Dept. of Industrial Engineering, University of Bologna

Objective: implementation of a multibody model to predict the dynamic loads on a forklift truck that impacts a steel plate obstacle in rectilinear motion at constant (high) speed Accuracy criteria: - vertical acceleration of the front axle (peak amplitude/location and frequency content) - tilt force (peak amplitude/location and frequency content)

Experimental tests • Vertical accelerations Sensor • 6 Accelerometers ➡● Mast accelerations • 2 Load cells setup • Tilt force **Steel plate** obstacle test

Numerical model

Multibody model of the complete forklift implemented with RecurDyn (FunctionBay, Seongnam, South Korea).

• Ground/wheels ground/surface contacts

Wheels → Actual tire compliance modeled with nonlinear lumped stiffness parameter between each wheel and its axle

Static test (mass distribution)

Tilt cylinder stiffness test

(main resonance of mast assembly excited by rapidly lowering the load)

Lifting actuator lacksquare

Non Linear Spring

Linear spring with stiffness Tilt Cylinders \bullet

M,J g M= mast + fork + load mass J = mast+ fork + load inertia k = tilt cylinder stiffnes:

Unloaded forklift results

Conclusions

Satisfactory accuracy of the simulations after model updating/validation: Acceleration and tilt force peaks and general trends predicted precisely Main vibration phenomena correctly replicated

Contact information * <u>marco.pinelli5@studio.unibo.it</u> * <u>alberto.martini6@unibo.it</u>