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Introduction

Lattice structures are 2.5D or 3D porous 
structures, with a periodic geometry generated 
by the repetition in space of one or more unit 
cells. Unit cells are defined by the dimensions 
and connectivity of their strut elements, 
connected at specific nodes and with 
dimensions in the order of millimetres [8,13]. 

Lattice materials can adapt the mechanical and 
thermal properties to the needs of a specific 
application by acting on the bulk material and 
on the microarchitecture of the cell (porosity, 
cell geometry). This capability makes lattice 
materials interesting for different fields such as: 
biomedical, automotive, and aerospace. The 
biomedical field is an important application, 
where the lattice has to meet some additional 
requirements such as biocompatibility, bone 
ingrowth and attractive surface morphology [4].

There are still no international standards for 
tensile and fatigue mechanical tests.

ISO standard 13314:2011 is available for static 
compression tests on metal foams with porosity 
greater than 50% [9]. This standard is also 
generally adopted for 
compression-compression fatigue tests. For 
tensile test, the main issue is the design of 
mechanical interfaces able to clamp the 
specimen [1].

At the University of Trento a new type of 
specimen for tensile and fatigue tests was 
designed [2]. The specimen has a circular 
cross-section and 8 cells along the diameter. 
The solution adopted for the clamping problem 
is a flanged bolted joint, for the following 
reasons:

● The need of small axial overall 
dimensions for the specimen.

● Manufacturing reasons: possibility of 
rectifying the flanges after 3D printing, 
obtaining coaxial ends for the specimen 
and therefore mitigating spurious 
bending strains in the lattice.

● The need to host specimens with 
relatively large unit cells.

The aim of the research project is to 
optimize the specimen’s geometry in order 
to get:

1. Uniform internal loads within a 
specimen cross-section

2. Uniform internal loads among 
different cross-sections of the gauge 
length.

The first requirement was achieved solving 
an optimization problem having as variables 
two geometrical parameters: the flange 
thickness and the “bell” height. The 
objective function ‘Δσ’ is computed as the 
maximum percentage difference between 
normalized internal loads on the middle 
cross-section.

Simulation strategies

Optimization strategies

Results

A finite element model of the specimen was 
created in 'ANSYS Mechanical APDL' in order to 
simulate the tensile mechanical response. The 
homogenization technique was adopted to 
keep the model computationally efficient. The 
homogenized model was created including five 
layers for the transition zone, each 
corresponding to a cell with an average strut 
diameter, plus the central layer of the uniform 
lattice part. The layers follow the spline 
geometry of the “bell”. 

Mirror symmetry constraints and radial 
symmetry constraints were applied in order to 
simplify the model. A displacement was applied 
to the nodes of the middle cross-section 
completing implicitly the symmetry constraint.

The homogenization technique determines the 
effective properties of the lattice material as 
function  of the bulk material and the 
morphology of the unit cell. 

An optimization problem was set in order to 
define the values of the “bell” height and the 
flange thickness able to generate the most 
uniform stress distribution in the sample. These 
two parameters were collected inside a vector 𝛼 
which is the design variable vector.

The cost function ‘g0‘ is the metric that has to 
be minimized in the optimization process. This 
is a measure of the stress uniformity in the 
sample. The function is described by the 
parameter Δσ, computed as the maximum 
percentage difference between normalized 
stresses within the middle cross-section of the 
specimen. A 5% threshold was set as the 
stopping condition for Δσ. 

The optimization process was performed on the 
simple cubic cell for different porosity and 
different cell sizes (L). The obtained results are 
presented in charts where the optima “bell” 
height and the flange thickness, normalized with 
respect to L, are plotted against the lattice 
porosity.

There is a good agreement among the optimal 
values for different cell sizes. it could be stated 
that the porosity is the main parameter 
determining the design values for the simple 
cubic cell. 

The optimization results, obtained via the 
homogenization process, are validated 
comparing the optimum configuration with the 
results obtained by an equivalent fully detailed 
FE model. Numerous comparisons have been 
produced for different configurations but for the 
sake of brevity only the following is presented:

● L = 4 mm
● Porosity = 80 %

The effective elastic properties of the lattice 
material were associated to an equivalent 
homogeneous solid that replaces the lattice 
domain. These orthotropic properties were 
obtained from the structural analysis of a single 
representative volume element: the unit cell.

A homogenization tool from the nTopology 
Platform software was used to obtain the 
stiffness matrix of the generalized Hooke’s law 
for the cubic cell. The elastic constants, 
associated to the homogeneous volume in 
Ansys, were computed from the stiffness matrix.

The homogenization method has some 
limitations due to the hypotheses that it is 
based on: (i) the ‘existence of a length-scale 
separation between the microstructure and the 
domain of interest’ and (ii) ‘the spatial 
periodicity in the lattice’ [1,11,12].

The ‘Gibson-Ashby formula’ was used to 
conduct a preliminary evaluation of the elastic 
constants. This is a power law function linking 
the relative density of the lattice to the relative 
elastic modulus of the same [6,7].

The simple cubic cell is classified as a 
bending-dominated cell according to Maxwell's 
M index, so n will be equal to 2 [10]. C1 is a 
constant obtained from the fit of experimental 
curves.

The fully detailed model was meshed via 
nTopology and imported into ANSYS 
Mechanical APDL. The creation of the mesh in 
nTopology is not trivial and it requires the 
splitting specimen into different parts. These 
are meshed separately and then connected. 

The behavior of the structure was simulated in a 
fully elastic regime by applying a displacement 
on the middle cross section of the model. It 
considers also the bolt connection with an initial 
preload and the rigid-flexible contact with a 
counter flange.

The set ‘S’ represents the only boundary 
condition applied to the optimization problem. 
It sets a range in which the optimum point of 
the design variables could be found. These 
boundaries are defined after manufacturing 
considerations and they are linked to the 
parameter L, the cell size.

Once the formulation of the optimization 
problem is completed, a sensitivity analysis is 
necessary. A numerical approach was proposed: 
the partial derivative of the cost function is 
approximated as a finite difference. The 
increment h was applied to the proper variable 
by the vector ej. 

The proposed optimization problem could be 
solved iteratively by the Method of the Moving 
Asymptotes (MMA). This technique has the 
advantage of generating convex linear 
subproblems around a FE solution. Using the 
information given by the sensitivity analysis, the 
next iteration was computed till the stopping 
condition is satisfied.  A formal scheme of the 
approach is proposed side by side with a 
flowchart describing the implementation.

It is evident in these validations the similarity in 
the two stress distributions and in the Δσ 
values: 3.2 % for the homogeneous model and 
3.4 % for the cellular model.

The initial aim of the authors can be considered 
reached for this unit cell, since an optimal 
definition of the design variables is found and 
verified via FE cellular simulations. An 
experimental campaign will be carried out in 
the near future in order to verify experimentally 
the obtained results. In addition, more cell 
topologies will be included in the parametric 
definition of the sample geometry.

[1] M. Benedetti, A. du Plessis, R.O. Ritchie, M. Dallago, S.M.J. Razavi, F. Berto, 
Architected cellular materials: A review on their mechanical properties towards 
fatigue-tolerant design and fabrication, Materials Science and Engineering: R: Reports, 
Volume 144, 2021,100606, ISSN 0927-796X, 
https://doi.org/10.1016/j.mser.2021.100606.

[2] M. Dallago, S. Raghavendra, V. Luchin, G. Zappini, D. Pasini, M. Benedetti, The role 
of node fillet, unit-cell size and strut orientation on the fatigue strength of Ti-6Al-4V 
lattice materials additively manufactured via laser powder bed fusion, International 
Journal of Fatigue, Volume 142, 2021,105946, ISSN 0142-1123, 
https://doi.org/10.1016/j.ijfatigue.2020.105946.

[3] X.P. Tan, Y.J. Tan, C.S.L. Chow, S.B. Tor, W.Y. Yeong, Metallic powder-bed based 3D 
printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on 
manufacturing, topological design, mechanical properties and biocompatibility, 
Materials Science and Engineering: C, Volume 76, 2017, Pages 1328-1343, ISSN 
0928-4931, https://doi.org/10.1016/j.msec.2017.02.094.

[4] Dietmar W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, 
Biomaterials, Volume 21, Issue 24, 2000, Pages 2529-2543, ISSN 0142-9612, 
https://doi.org/10.1016/S0142-9612(00)00121-6.

[5] Christensen P. W, Klarbring A. An Introduction to Structural Optimization. 2009 
Springer Science. ISBN 978-1-4020-8665-6.

[6] Gibson, L. (2003). Cellular Solids. MRS Bulletin, 28(4), 270-274. 
doi:10.1557/mrs2003.79. 

[7] L.J. Gibson, M.F. Ashby, G.S. Schajer, C.I. Robertson, Proc. R. Soc. A Math. Phys. 
Eng. Sci. 382 (1982) 25–42.

[8] Fleck, V. Deshpande and Ashby, “Micro-architectured materials: past, present and 
future”, Department of Engineering, University of Cambridge, Trumpington Street, 
Cambridge, CB2 1PZ, UK Proc. R. Soc. A, (2010) 466, 2495–2516, doi: 
10.1098/rspa.2010.0215.

[9] International Organization for Standardization, Mechanical testing of metals — 
Ductility testing — Compression test for porous and cellular metals ISO 13314:2011

[10] Maxwell, J.C., 1864. On the calculation of the equilibrium and stiffness of frames. 
Philosophical Magazine 27, 294–299.

[11] Hashin, Z. (1983). Analysis of Composite Materials—A Survey. Journal of Applied 
Mechanics, 50, 481-505.

[12] Hollister, S. J., & Kikuchi, N. (1992). A comparison of homogenization and 
standard mechanics analyses for periodic porous composites. Computational 
Mechanics, 10(2), 73-95. doi:10.1007/BF00369853. 

[13] Riva L., Ginestra P.S., Ceretti E., Mechanical characterization and properties of 
laser-based powder bed-fused lattice structures: a review, The International Journal of 
Adv. Manif. Tecnol. http://doi.org/10.1007/s00170-021-06631-4. 

The specimen, fabricated through 3D printing, 
consists in 3 parts:

1. A circular flange with a bell-shaped 
thickening in the central part. 

2. A transition zone with a linear gradient of 
relative density in the axial direction, up 
to a maximum of 75 %.

3. A uniform cellular zone, with a uniform 
lattice filled by cells of the same shape.

The transition zone was introduced to avoid 
failure at the interface with the flange. 
Furthermore, the flange hosts the holes for 8 
bolts.

Different types of lattices were tested. A search 
field with three parameters of interest has been 
defined:

● Cell topology: simple cubic.
● Cell porosity: [50, 60, 70 ,80, 90, 95] %
● Cell side: [1, 2, 3, 4] mm
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