A NUMERICAL FLUID-STRUCTURE INTERACTION METHODOLOGY
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INTRODUCTION

The Thoracic Endovascular Aortic Repair (TEVAR) is a minimally invasive

/ To develop a numerical workflow to virtually implant a stent-graft in an idealized aorta and to reproduce tha

technique to treat the thoracic aorta pathologies, such as aneurysms and :
dissec?.ions P J y pre- and post-TEVAR hemodynamics.
AIM : _ : : :
A stent-graft is crimped inside a catheter, inserted into the pathological | > Structural analysis > Finite Element Analysis (FEA) — Device deployment into the vessel
region and released to restore the correct lumen.
o _ . : : » Computational Fluid Dynamic (CFD) Pre-TEVAR and Post-TEVAR
Common long-term complications and consequences are: Endoleaks, Device Fluid-dynamic analysis o & . <t cture Interaction (FSI) " hemodynamics
Migration, Bird Beak and Compliance Mismatch. \ /
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I Blood is modeled as a Newtonian and incompressible fluid. Pre-TEVAR H Post-TEVAR §‘~u structural FEA results.
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RESULTS
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~~ POST-TEVAR CFD VS. FSI COMPARISON =~ -~ FSI PRE-TEVAR VS. FSI-POST TEVAR COMPARISON .
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S o TEVAR COMPLICATIONS AND CONSEQUENGCES e
<§.: Bird beak The device migration is studied by computing the The compliance mismatch verifies because of a difference in stiffness at the device-
E configuration displacement force (DF) acting on the device [3]. arterial wall interface. It is evaluated on 4 sections along the length of the device [4].
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CONCLUSIONS

This numerical tool can be used both for procedural planning and stent-grafts design optimization to minimize complications. The Windkessel Boundary conditions make the procedure applicable to patient
specific cases. Also, common TEVAR complications can be both qualitatively and quantitatively analyzed.

The real novelty — with respect to literature studies — are the complex FSI simulations which take into account for material non linearities and contacts; moreover, the device is embedded into the fluid volume
thus allowing some local movements.
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